

SPUTUM PROCESSING WORKSHEET

ID NUMBER: FORM CODE: SPW VERSION: 6.0 04/22/2019 Event
0a) Form Date / / 0b) Staff Code
Instructions: Complete this form while processing the sputum sample. Carefully record all data in the space provided.
1) Weight of Entire Sample
Color and Description of Sample:
 2) Salivary Contamination (check all that apply): a) Minimal b) Mild c) Moderate d) Excessive
 3) Consistency (check all that apply): a) Watery b) Mucoid c) Purulent (puss)
 4) Mucus "plugs" (material that is colored and/or more opaque than clear surrounding saliva) (check all that apply): a)

				_
חו	Νl	INA	RF	P.
ıυ	111	ואוכ	ᄂ	17.

			V

Event

- 5) Color of plugs (check all that apply):
 - a) 🗌 Clear
 - b) 🗌 White
 - c) 🗌 Yellow/Tan
 - d) 🗌 Brown
 - e) 🗌 Green
- 6) General Notes/Comments:
- 6a) Sputum processing condition
 - Condition 1: Induced initial sample Wt. is > $1g_1 \rightarrow$ **Perform Steps 7-14 below**
 - Condition 2: Induced initial sample Wt. is $0.5g-1g_2 \rightarrow \text{Perform Step 7; then 10-14 below}$
 - Condition 3: Induced initial sample Wt. is <0.5g₃ → **Perform Steps 10-14 below**
 - Condition 4: Induced initial sample Wt. is <0.5g and a spontaneous sputum sample was acquired prior to induction₄ → Perform Steps 7-8 with induced sample; then 10-14 with spontaneous sample</p>
 - Condition 5: No induced sputum sample was produced; but a spontaneous sample was acquired₅
 - 6a1) Sputum processing for Condition 5
 - Condition A: Spontaneous sample Wt. is > $1g_1 \rightarrow$ **Perform Steps 7-14 below**
 - Condition B: Spontaneous sample Wt. is $0.5g-1g_2 \rightarrow Perform Step 7$; then 10-14 below
 - Condition C: Spontaneous sample Wt. is <0.5g₃ → Perform Steps 10-14 below
- 7) Processing Whole Sample using the Mucin Method

Mucin Sample	
Weighing tray (g)	7a)
Whole sputum weight (g)	7b)
Guanidine vol. (ml)	7c)

*Sample size should be from 0.100-0.250g. Add 0.5ml of guanidine reduction buffer (6M) to the sample and store at 2-8 ° C in the refrigerator.

8) Processing Microbiology sample

Micro Sample	
Micro centrifuge tube (g)	8a)
Whole sputum weight (g)	8b)
Vol. of Zymo added (µl)	8c)
Vol. per aliquot (8b+8c)/2	8d)

ID NUMBER:

FORM CODE: SPW VERSION: 6.0 04/22/2019

Event

*Weigh an empty micro centrifuge tube. Zero the balance. Measure ~0.200g of whole sputum sample and record the weight. Add an equal volume (~200µl) of Zymo Research RNA/DNA Shield to the sample and mix. Divide the sample into 2 equal aliquots and store at -80°C. Ship sample on dry ice.

9) Processing %Solids/Osmotic Pressure Sample

Osmo Sample	
Micro centrifuge tube (g)	9a)
Whole sputum weight (g)	9b)

*Weigh an empty micro centrifuge tube. Zero the balance. Use a 200µl air displacement pipette and draw up whatever can be achieved. Transfer entire volume (50-200µl) of sample to micro centrifuge tube. Record the weight (g) of the sample and store at -80°C. Sample can be transferred to -20°C prior to delivery.

10)Processing Total Remaining Whole Sample for Cytokines, Nucleotides, Cell Counts, Cytospins and RNA

Weight of Centrifuge tube (g)	10a1)
Weight of Sputum (g)	10b1)
Volume of EDTA-DPBS added to sample (ml)	10c1)
Volume of supernatant removed (ml) (see section 11 below for process)	10d1)
Volume of EDTA added to stock sputolysin to make 0.2% DTT (ml)	10e1)
Volume of 0.2% DTT added to the sample (ml)	10f1)
Volume of DTT containing supernatant removed (ml)	10g1)
Resuspension Volume of EDTA- DPBS (0.25 – 2 ml)	10h1)

*Weigh a 50ml conical test tube. Zero the balance. Add remaining sample to 50 ml conical test tube and record weight in grams. Add 8x sample weight of cold EDTA-DPBS buffer, homogenize for 15 min on a rotating tumbler, then spin at 790g at 10 min. Remove half the volume of supernatant (leaving behind the "master sample") and spin this at 1500 g for 10 min. Collect the supernatant and store at -80°C (see text below section 11). To the "master" sample, add a volume of 0.2% sputolysin (diluted with 1mM EDTA) that is equal to the same volume you previously removed from the master sample; i.e., half the volume of DPBS you added to initial weight of sample. For example, if initial volume of DPBS added to the sample = 8 ml, you need to add 4 ml of 0.2% sputolysin as follows: 0.8 ml DTT from stock vial (1%) + 3.2 ml of cold DPBS = 4 ml of 0.2% sputolysin). Pipet the sample up and down with P1000 pipette to break up any clumps (this is especially necessary for very viscous/thick samples), then homogenize the sample for 15 min. on a rotating tumbler - then filter the sample through a pre-wetted 48-53 μ m nylon mesh into new 50 ml tube. Spin the sample filtrate at 790 g for 10 minutes. Remove and store the entire volume of DTT containing supernatant at -80°C (see EDTA-DTT Supernatant Table in 11 below). Resuspend the cell pellet in cold EDTA-DPBS (0.25 – 2ml depending on thickness of pellet).

11) EDTA-DPBS Supernatants for Nucleotides and Cytokines

Supernatants	Number of aliquots	Volume stored per aliquot (µl)
Nucleotides	a1)	b1)
Cytokines	c1)	d1)
Cytokine Zymo Research RNA/DNA	e1)	f1)

*If the supernatant volume is greater than 8.6 ml, obtain 4 1000 µl aliquots for nucleotides and, 4 1000 µl aliquots for cytokines. Of the remaining sample, take 600 µl and mix it 1:1 with Zymo Research RNA/DNA shield. Apply the label called "SPU_DPBS_Zymo" to the aliquot containing the Zymo Research RNA/DNA shield.

If the sample volume is less than 8.6 ml start by getting 1 nucleotide sample between 200-500 µl and 1 cytokine sample at 200 µl. Mix one of the cytokine aliquots1:1with Zymo Research RNA/DNA shield and apply the label called "SPU_DPBS_Zymo" to this aliquot. If there is sample leftover after that, then continue alternating between nucleotide and cytokine aliquots (i.e., 200-500 µl for nucleotides, 200 µl for cytokines) until finished.

All supernatant samples are immediately stored in a -80° C freezer.

EDTA-DTT Supernatants

Supernatants	Volume stored (ml)
Sputolysin Sup 01	g1)
Sputolysin Sup 02	g2)

Cell Counts:	# Dead	# Live	Total	Squamous Epithelial
a) Quadrant 1	1)	2)	3)	4)
b) Quadrant 2	1)	2)	3)	4)
c) Quadrant 3	1)	2)	3)	4)
d) Quadrant 4	1)	2)	3)	4)
e) Totals:	1)	2)	3)	4)

*Count live (clear) and dead (cell interior is blue) cells in each of the 4 corner quadrants. Include bronchial epithelial cells (BEC's), but exclude RBC's. Count squamous epithelial cells but do not include them in the total live/dead cell count. Perform total cell count and cell viability. Adjust the cell concentration of the sample to $0.5 - 1 \times 10^6$ cells/ml and make 4 cytospin slides.

FORM CODE: **SPW** VERSION: 6.0 04/22/2019

Event

Sample Concentration (cells/ml) = ([12e3 / 4] X 2 X 10 ⁴)	12f)
Total Cell Count = (($[12e3 / 4] \times 2 \times 10^4$) x 10h1) (ref range: 1/2 million – 1 million)	_{12f} 12g)
Number of cells/weight = (12g) / weight of selected sample (10b1)	_{12g} 12h)
Viability = (12e2 live cells / 12e3 total cells) X 100	_{12h} 12i)
Final Adjusted Sample Concentration (cells/ml) based on resuspension volume (range = $0.5 - 1.0 \times 10^{6}$ /ml)	12j)

13)Cytospins

	# of slides stored	Amount of cell suspension used (µI)
Hema 3 stained slides	13 a)	b)

*Slides are made using 60 μ L-90 μ l of cell suspension (at 0.5 - 1X10⁶/ml). Make 1 slide using 60 μ l, 2nd slide using 70 μ l, 3rd slide using 80 μ l and a 4th slide using 90 μ l. Spin 6 min. at 450rpm. Note: these volumes are based on the Shandon Cytospin IV model. If you are using a different cytospin instrument, refer to the manufacturer's instructions on appropriate sample concentrations and volumes to use. Following air drying, fix all 4 slides in 95% ethanol – DO NOT COVER SLIP THE SLIDES. Ship all slides to the slide reading center. Store all slides in SPIROMICS box at room temperature.

14)Cells for RNA

Noo

Yes1

Zymo Research RNA/DNA cell pellet	₁₄ 14a)
-----------------------------------	--------------------

*The sample is spun down at 790g for 10 minutes. Discard the supernatant and resuspend the pellet in 500 μ l of DPBS. Add 500 μ l of Zymo Research RNA/DNA shield to the sample. Then divide this into two equal 500 μ l aliquots for storage Store in -80 ° C.The number of cells left in the Zymo Research RNA/DNA pellet will be equal to the TCC (12g) minus the total number of cells used to make slides in (13b (0.0 – 0.3) ml X 12j).

15)Comments

0e16) Processing Ended AM/PM (circle one)

END OF FORM